Controlling chaos in area-preserving maps

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling chaos in area-preserving maps

We describe a method of control of chaos that occurs in area-preserving maps. This method is based on small modifications of the original map by addition of a small control term. We apply this control technique to the standard map and to the tokamap.

متن کامل

Renormalization and Transition to Chaos in Area Preserving Nontwist Maps

The problem of transition to chaos, i.e. the destruction of invariant circles or KAM (Kolmogorov-Arnold-Moser) curves, in area preserving nontwist maps is studied within the renormalization group framework. Nontwist maps are maps for which the twist condition is violated along a curve known as the shearless curve. In renormalization language this problem is that of nding and studying the xed po...

متن کامل

Area preserving nontwist maps: periodic orbits and transition to chaos

Area preserving nontwist maps, i.e. maps that violate the twist condition, are considered. A representative example, the standard nontwist map that violates the twist condition along a curve called the shearless curve, is studied in detail. Using symmetry lines and involutions, periodic orbits are computed and two bifurcations analyzed: periodic orbit collisions and separatrix reconnection. The...

متن کامل

Transport properties in nontwist area-preserving maps.

Nontwist systems, common in the dynamical descriptions of fluids and plasmas, possess a shearless curve with a concomitant transport barrier that eliminates or reduces chaotic transport, even after its breakdown. In order to investigate the transport properties of nontwist systems, we analyze the barrier escape time and barrier transmissivity for the standard nontwist map, a paradigm of such sy...

متن کامل

Visualizing Invariant Manifolds in Area-Preserving Maps

Area-preserving maps arise in the study of conservative dynamical systems describing a wide variety of physical phenomena, from the rotation of planets to the dynamics of a fluid. The visual inspection of these maps reveals a remarkable topological picture in which invariant manifolds form the fractal geometric scaffold of both quasi-periodic and chaotic regions. We discuss in this paper the vi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physica D: Nonlinear Phenomena

سال: 2005

ISSN: 0167-2789

DOI: 10.1016/j.physd.2005.06.016